Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R66-R78, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955131

RESUMO

In addition to its role in substrate selection (carbohydrate vs. fat) for oxidative metabolism in muscle, acetylcarnitine production may be an important modulator of the energetic pathway by which ATP is produced. A combination of noninvasive magnetic resonance spectroscopy measures of cytosolic acetylcarnitine and ATP production pathways was used to investigate the link between [acetylcarnitine] and energy production in vivo. Intracellular metabolites were measured in the vastus lateralis muscle of eight males (mean: 28.4 yr, range: 25-35) during 8 min of incremental, dynamic contractions (0.5 Hz, 2-min stages at 6%, 9%, 12%, and 15% maximal torque) that increased [acetylcarnitine] approximately fivefold from resting levels. ATP production via oxidative phosphorylation, glycolysis, and the creatine kinase reaction was calculated based on phosphorus metabolites and pH. Spearman rank correlations indicated that postcontraction [acetylcarnitine] was positively associated with both absolute (mM) and relative (% total ATP) glycolytic ATP production (rs = 0.95, P = 0.001; rs = 0.93, P = 0.002), and negatively associated with relative (rs = -0.81, P = 0.02) but not absolute (rs = -0.14, P = 0.75) oxidative ATP production. Thus, acetylcarnitine accumulated more when there was a greater reliance on "nonoxidative" glycolysis and a relatively lower contribution from oxidative phosphorylation, reflecting the fate of pyruvate in working skeletal muscle. Furthermore, these data indicate striking interindividual variation in responses to the energy demand of submaximal contractions. Overall, the results of this preliminary study provide novel evidence of the coupling in vivo between ATP production pathways and the carnitine system.NEW & NOTEWORTHY Production of acetylcarnitine from acetyl-CoA and free carnitine may be important for energy pathway regulation in contracting skeletal muscle. Noninvasive magnetic resonance spectroscopy was used to investigate the link between acetylcarnitine and energy production in the vastus lateralis muscle during dynamic contractions (n = 8 individuals). A positive correlation between acetylcarnitine accumulation and "nonoxidative" glycolysis and an inverse relationship with oxidative phosphorylation, provides novel evidence of the coupling between ATP production and the carnitine system in vivo.


Assuntos
Acetilcarnitina , Músculo Esquelético , Humanos , Masculino , Acetilcarnitina/metabolismo , Músculo Esquelético/metabolismo , Carnitina , Metabolismo Energético/fisiologia , Trifosfato de Adenosina/metabolismo
2.
PLoS One ; 13(11): e0207642, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427940

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0200937.].

3.
PLoS One ; 13(7): e0200937, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30024947

RESUMO

At parallel fibre terminals in the cerebellar cortex, glutamate released outside of the active zone can activate AMPA receptors on juxtaposed Bergmann glial cell processes. This process is termed "ectopic" release, and allows for directed transmission to astroglial cells that is functionally independent of synaptic transmission to postsynaptic Purkinje neurons. The location of ectopic sites in presynaptic terminals is uncertain. Functional evidence suggests that stimulation of parallel fibres at 1 Hz exhausts ectopic transmission due to a failure to rapidly recycle vesicles to the ectopic pool, and so would predict a loss of vesicles in the near vicinity of extrasynaptic glial processes. In this study we used this stimulation protocol to investigate whether the distribution of vesicles within the presynaptic terminal is altered after suppression of ectopic release. Stimulation at 1 Hz had only a minor impact on the distribution of vesicles in presynaptic terminals when analysed with electron microscopy. Vesicle number and terminal size were unaffected by 1 Hz stimulation, but the relative abundance of vesicles in close proximity to the active zone was marginally reduced. In contrast, the fraction of vesicles facing glial membranes was unchanged after suppression of ectopic transmission. 1 Hz stimulation also resulted in a small but statistically-significant increase in the distance between glial membrane and presynaptic terminal, suggesting withdrawal of glial membranes from synapses is detectable in ultrastructural anatomy within minutes. These results raise doubts about the location of ectopic release sites, but indicate that neuron-glial association varies on a dynamic time scale.


Assuntos
Comunicação Celular/fisiologia , Cerebelo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Células de Purkinje/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Células Cultivadas , Cerebelo/citologia , Estimulação Elétrica , Ácido Glutâmico/metabolismo , Células de Purkinje/citologia , Ratos , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...